Picard Groups of Deligne-lusztig Varieties — with a View toward Higher Codimensions

نویسنده

  • SØREN HAVE HANSEN
چکیده

Let (G;F) be a connected reductive algebraic group over an algebraically closed field k of positive characteristic p, equipped with an Fq -structure coming from a Frobenius morphism F : G ! G. Let L : G ! G be the corresponding Lang map taking an element g 2 G to g 1F(g). By the Lang-Steinberg Theorem [Bor92, Theorem 16.3] this morphism of varieties is surjective with finite fibres. From this result it follows that, by conjugacy of Borel subgroups, there exists an F-stable Borel subgroup B. Let π : G!G=B := X denote the quotient. There are then (with a slight abuse of notation) natural endomorphisms F :W !W and F : X !X of the Weyl group of G and the variety X of Borel subgroups of G. Let W be generated by the simple reflections s1; : : : ;sn and let l( ) be the length function with respect to these generators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Affine Deligne–lusztig Varieties at Infinite Level (preliminary Version)

Part 1. Two analogues of Deligne–Lusztig varieties for p-adic groups 5 2. Affine Deligne–Lusztig varieties at infinite level 5 2.1. Preliminaries 5 2.2. Deligne–Lusztig sets/varieties 7 2.3. Affine Deligne–Lusztig varieties and covers 8 2.4. Scheme structure 9 3. Case G = GLn, b basic, w Coxeter 12 3.1. Notation 12 3.2. Basic σ-conjucacy classes. Isocrystals 12 3.3. The admissible subset of Vb ...

متن کامل

Dimensions of Newton Strata in the Adjoint Quotient of Reductive Groups

In [Cha00] Chai made a conjecture on the codimensions of Newton strata in Shimura varieties, which then led Rapoport [Rap05] to his conjecture on dimensions of affine Deligne-Lusztig varieties inside affine Grassmannians. The main goal of this paper is to show that exactly the same codimensions arise in a simpler context, that of the Newton stratification in the adjoint quotient of a reductive ...

متن کامل

Connected Components of Closed Affine Deligne-lusztig Varieties

We determine the set of connected components of closed affine Deligne-Lusztig varieties for special maximal compact subgroups of split connected reductive groups. We show that there is a transitive group action on this set. Thus such an affine Deligne-Lusztig variety has isolated points if and only if its dimension is 0. We also obtain a description of the set of these varieties that are zero-d...

متن کامل

Connected Components of Affine Deligne-lusztig Varieties in Mixed Characteristic

We determine the set of connected components of minuscule affine Deligne-Lusztig varieties for special maximal compact subgroups of unramified connected reductive groups. Partial results are also obtained for non-minuscule closed affine Deligne-Lusztig varieties. We consider both the function field case and its analog in mixed characteristic. In particular, we determine the set of connected com...

متن کامل

On the Connectedness of Deligne-lusztig Varieties

We give a criterion which determines when a union of one-dimensional Deligne-Lusztig varieties has a connected closure. We obtain a new, short proof of the connectedness criterion for Deligne-Lusztig varieties due to Lusztig.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001